当前位置: 首页 > news >正文

怎样在织梦网站建设目录竞价推广托管服务

怎样在织梦网站建设目录,竞价推广托管服务,wordpress alt,济宁网架有多少网架公司文章目录 序言原理讲解哪些部分可转onnx 代码区0. 安装依赖1. 路径配置2. 测试数据3. 准备工作3.1迁移保存目标文件 4. model转onnx-gpu5. 测试一下是否出错以及速度5.1 测试速度是否OK5.2测试结果是否OK 6. tar 这些文件 序言 本文适合小白入门,以自己训练的句子e…

文章目录

  • 序言
  • 原理讲解
    • 哪些部分可转onnx
  • 代码区
    • 0. 安装依赖
    • 1. 路径配置
    • 2. 测试数据
    • 3. 准备工作
      • 3.1迁移保存目标文件
    • 4. model转onnx-gpu
    • 5. 测试一下是否出错以及速度
      • 5.1 测试速度是否OK
      • 5.2测试结果是否OK
    • 6. tar 这些文件

序言

本文适合小白入门,以自己训练的句子embedding模型为例,像大家展示了如何手动将sentence-transformer的模型转为onnx。

很多时候,我也不知道这段代码啥意思,但是作为应用人员,不要在意这段代码到底干了啥,除非必要。

这里不仅展示了如何转onnx,还有你部署时候,所需要的所有的文件,都打包到一个文件夹中了。

原理讲解

哪些部分可转onnx

onnx转换的时候,tokenizer部分是无法被onnx的,只有你backone模型才能进行转onnx,不要问我为啥,因为我也不知道。
我的模型使用代码如下:

from sentence_transformers import SentenceTransformer, models# 1. backone模型,这里用的bert-small
bert_model = models.Transformer("all-MiniLM-L6-v2") # 2. bert_model得到的是所有单词的向量,这些向量通过pool变成一个向量,
# 再通过normalize变成单位向量,即可进行dot,计算得到cosine相似度。
pool = models.Pooling(bert_model.get_word_embedding_dimension())
normalize = models.Normalize()# 模型组装
mymodel = SentenceTransformer(modules=[bert_model, pool, normalize])

代码区

0. 安装依赖

pip install onnx
pip install onnxruntime
pip install onnxruntime-gpu
先CPU然后GPU,不按顺序装可能会出现问题

1. 路径配置

import os# 你自己的模型
raw_model_dir = "../model/model11_all-MiniLM-L6-v2/"
abspath, raw_model_name = os.path.split(os.path.abspath(raw_model_dir))
# onnx后,所需要的文件,都转到了这个文件夹中
onnx_dir = os.path.join(abspath, raw_model_name+"_onnx-gpu/")if not os.path.exists(onnx_dir):os.mkdir(onnx_dir)print("build dir:", onnx_dir)

2. 测试数据

titles = ["Treehobby Metal 2PCS Front CVD Drive Shafts RC Cars Upgrade Parts for WLtoys 144001 1/14 RC Car Truck Buggy Replacement Accessories", 
"Solar System for Kids Space Toys, 8 Planets for Kids Solar System Model with Projector, Stem Educational Toys for 5 Year Old Boys Gift", 
"Bella Haus Design Peeing Gnome - 10.3 Tall Polyresin - Naughty Garden Gnome for Lawn Ornaments, Indoor or Outdoor Decorations - Red and Green Funny Flashing Gnomes", 
"FATExpress CMX500 CMX300 Parts Motorcycle CNC Front Fork Boot Shock Absorber Tube Slider Cover Gaiters for 2017 2018 2019 Rebel CMX 300 500 17-19 (Black)", 
"All Balls Racing 56-133-1 Fork and Dust Seal Kit", 
"Shaluoman Plating 5-Spoke Wheel Rims with Hard Plastic Tires for RC 1:10 Drift Car Color Black", 
"Betonex 5pcs PLASTIK MOLDS Casting Concrete Paving Garden Paths Pavement Stone Patio#S25", 
"OwnMy 5.2 Inch Rainbow Crystal Lotus Candle Tealight Holder Candlestick, Glass Votive Candle Lamps Holder Night Light Candlestick with Gift Box for Altar Windowsill Home Decor Christmas Wedding Party", 
"cnomg Pot Creative Plants DIY Container Pot Mini Fairy Garden Flower Plants and Sweet House for Decoration, Holiday Decoration, Indoor Decoration and Gift (Silver)", 
"DUSICHIN DUS-018 Foam Cannon Lance Pressure Washer Nozzle Tip Spray Gun 3000 PSI Jet Wash", 
"Haoohu Multicolored Bucket Hat for Women Men Girls Frog Fisherman Hat Beach Sun Hat for Outdoor Travel", 
"Renzline Pool CUE Glove Billiard Player - Green/Black - for Left Hand - One Size fits All",
"Hobbywing QUICRUN WP 1080 brushed (2-3S) Electronic Speed Controller Waterproof ESC With Program Box LED BEC XT60-Plug RC Car 1:10 30112750", 
"Mk Morse CSM868NTSC Metal Devil NXT Metal Cutting Circular Saw Blade, Thin Steel, 8-Inch Diameter, 68 TPI, 5/8-Inch Arbor, multi", 
"Barbie Fashionistas Doll 109", 
"KeShi Cordless Rotary Tool, Upgraded 3.7V Li-ion Rotary Accessory Kit with 42 Pieces Swap-able Heads, 3-Speed and USB Charging Multi-Purpose Power Tool for Delicate & Light DIY Small Projects", 
"White Knight 1707SBK-20AM Black Chrome M12x1.50 Bulge Acorn Lug Nut, 20 Pack", 
"Memory Foam Bath Mat Rug,16x24 Inches,Luxury Non Slip Washable Bath Rugs for Bathroom,Soft Absorbent Floor Mats of Green Leaves for Kitchen Bedroom Indoor", 
"DEWIN Airbrush Kit, Multi-purpose Airbrush Sets with Compressor -Dual Action 0.3mm 7CC Capacity Mini Air Compressor Spray Gun for Paint Makeup Tattoo Cake Decoration, Art Tattoo Nail Design", 
"Park Tool BBT-69.2 16-Notch Bottom Bracket Tool - Fits Shimano, SRAM, Chris King, Campagnolo, etc.", 
"ElaDeco 216 Ft Artificial Vines Garland Leaf Ribbon Greenery Foliage Rattan Greek Wild Jungle Decorative Accessory Wedding Party Garden Craft Wall Decoration"]

3. 准备工作

def load_all_model(path):#从modules.json读取模型路径modules_json_path = os.path.join(path, 'modules.json')with open(modules_json_path) as fIn:modules_config = json.load(fIn)from_backbone_path = os.path.join(path, modules_config[0].get('path'))from_pooling_path = os.path.join(path, modules_config[1].get('path'))from_Normalize_path = os.path.join(path, modules_config[2].get('path'))return from_backbone_path, from_pooling_path, from_Normalize_path
from_backbone_path, from_pooling_path, from_Normalize_path = load_all_model(raw_model_dir)
from transformers import AutoConfig, AutoModel, AutoTokenizer
model = AutoModel.from_pretrained(from_backbone_path)
tokenizer = AutoTokenizer.from_pretrained(from_backbone_path)
inputs = tokenizer(titles, padding=True, truncation=True, max_length=256, return_tensors="pt")
import torch
from sentence_transformers import modelspooling = models.Pooling.load(from_pooling_path)
normalize = models.Normalize.load(from_Normalize_path)

3.1迁移保存目标文件

import shutil
_dir, pooling_end_dir = os.path.split(from_pooling_path)
shutil.copytree(from_pooling_path, os.path.join(onnx_dir, pooling_end_dir))_dir, normalize_end_dir = os.path.split(from_Normalize_path)
shutil.copytree(from_Normalize_path, os.path.join(onnx_dir, normalize_end_dir))
'../model/model11_all-MiniLM-L6-v2_onnx-gpu-test/2_Normalize'
def copy_tokenize_filename(filename):full_filename = os.path.join(from_backbone_path, filename)return shutil.copy(full_filename, os.path.join(onnx_dir, filename))print(copy_tokenize_filename("tokenizer.json"))
print(copy_tokenize_filename("tokenizer_config.json"))
print(copy_tokenize_filename("vocab.txt"))
../model/model11_all-MiniLM-L6-v2_onnx-gpu-test/tokenizer.json
../model/model11_all-MiniLM-L6-v2_onnx-gpu-test/tokenizer_config.json
../model/model11_all-MiniLM-L6-v2_onnx-gpu-test/vocab.txt

4. model转onnx-gpu

device = torch.device("cuda:0")
model.eval()
model.to(device)
inputs = inputs.to(device)
export_model_path = os.path.join(onnx_dir, "model.onnx")with torch.no_grad():symbolic_names = {0: 'batch_size', 1: 'max_seq_len'}torch.onnx.export(model,  # model being runargs=tuple(inputs.values()),f=export_model_path,opset_version=12,  # 这个值传说12比11好,当然取决于onnx和onnxruntimedo_constant_folding=True, input_names=['input_ids',  'attention_mask','token_type_ids'],output_names=['start', 'end'], dynamic_axes={'input_ids': symbolic_names,  'attention_mask': symbolic_names,'token_type_ids': symbolic_names,'start': symbolic_names,'end': symbolic_names})print("Model exported at ", export_model_path)
Model exported at  ../model/model11_all-MiniLM-L6-v2_onnx-gpu-test/model.onnx

5. 测试一下是否出错以及速度

5.1 测试速度是否OK

import onnxruntime
from torch import Tensor
export_model_path = os.path.join(onnx_dir, "model.onnx")
device = torch.device("cuda:0")
sess_options = onnxruntime.SessionOptions()
sess_options.optimized_model_filepath = export_model_path
session = onnxruntime.InferenceSession(export_model_path, sess_options, providers=['CUDAExecutionProvider']) # 你的是安装在cuda
2023-07-21 17:54:55.912264962 [W:onnxruntime:, session_state.cc:1136 VerifyEachNodeIsAssignedToAnEp] Some nodes were not assigned to the preferred execution providers which may or may not have an negative impact on performance. e.g. ORT explicitly assigns shape related ops to CPU to improve perf.
2023-07-21 17:54:55.912385419 [W:onnxruntime:, session_state.cc:1138 VerifyEachNodeIsAssignedToAnEp] Rerunning with verbose output on a non-minimal build will show node assignments.
2023-07-21 17:54:56.222846005 [W:onnxruntime:, inference_session.cc:1491 Initialize] Serializing optimized model with Graph Optimization level greater than ORT_ENABLE_EXTENDED and the NchwcTransformer enabled. The generated model may contain hardware specific optimizations, and should only be used in the same environment the model was optimized in.
pooling_gpu = pooling.cuda()
normalize_gpu = normalize.cuda()
import time
begin = time.time()
for i in range(1000):inputs = tokenizer(titles, padding=True, truncation=True, max_length=256, return_tensors="pt")ort_inputs = {k: v.cpu().numpy() for k, v in inputs.items()}ort_outputs = session.run(None, ort_inputs)ort_outputs1 = pooling_gpu.forward(features={'token_embeddings': Tensor(ort_outputs[0]),'attention_mask': Tensor(ort_inputs.get('attention_mask'))})ort_outputs2 = normalize_gpu.forward(ort_outputs1)['sentence_embedding']
end = time.time()    
print("cost time:", end-begin)
cost time: 31.3445
begin = time.time()
for i in range(1000):inputs = tokenizer(titles, padding=True, truncation=True, max_length=256, return_tensors="np")ort_inputs = dict(inputs)ort_outputs = session.run(None, ort_inputs)ort_outputs1 = pooling_gpu.forward(features={'token_embeddings': Tensor(ort_outputs[0]).to(device),'attention_mask': Tensor(ort_inputs.get('attention_mask')).to(device)})ort_outputs2 = normalize_gpu.forward(ort_outputs1)['sentence_embedding']
end = time.time()    
print("cost time:", end-begin)
cost time: 19.234

5.2测试结果是否OK

from sentence_transformers import SentenceTransformerst_model = SentenceTransformer(raw_model_dir)
x = st_model.encode(titles)
import numpy as np
np.abs((x - ort_outputs2.cpu().numpy())).sum()
0.00010381325

误差数值很小,结果OK

6. tar 这些文件

abs_onnx_dir = os.path.abspath(onnx_dir)
# _dir, onnx_name = os.path.split(abs_onnx_dir)
os.system(f"tar -cf {abs_onnx_dir[:-1]}.tar {abs_onnx_dir}")
# f"tar -cf {abs_onnx_dir[:-1]}.tar {abs_onnx_dir}"
tar: Removing leading `/' from member names
0
http://www.masaee.cn/news/287.html

相关文章:

  • 影楼网站建设简述seo的基本步骤
  • 网站数据采集怎么做公关公司的主要业务
  • 招聘网站费用怎么做分录百度一下全知道
  • ctb自己做网站抖音seo供应商
  • 移动网站开发培训站长之家网站查询
  • 公司网站建设情况报告网络推广需要多少费用
  • 长安h5网站建设公司网站推广方案
  • 网页设计企业网站素材库项目推广渠道有哪些
  • 建设网站技术人员先进事迹青岛关键词排名提升
  • 做信息网站能挣钱吗销售找客户最好的app
  • 阜新门户网站建设网络营销的传播手段
  • 如何在网站上做免费代理百度关键词刷排名教程
  • 营销型网站开发方案网推放单平台
  • 免费网站建设靠谱嘛企业网站推广方案设计
  • app界面设计草图谷歌seo引擎优化
  • css3新特性seo如何优化排名
  • 迁安网站开发关键词搜索引擎工具爱站
  • 怎么做快递网站的分点网站建设方案优化
  • 家里电脑做网站淄博网站营销与推广
  • 网站后wordpress文章编辑页面策划方案模板
  • 中国交通建设集团英语网站市场调研分析
  • 荣添网站建设优化北京网络seo推广公司
  • 苏州网站建设用哪种好公司做网页要多少钱
  • 如何在微信内做网站seo搜索引擎优化实战
  • 企业网站响应式去除痘痘怎么有效果
  • 怎么用dw做静态网站百度全网营销
  • 用网站做简历有哪些营销推广方式
  • 网站空间商是什么站长素材网站
  • 做企业网站的供应商搜索优化整站优化
  • 织梦网站内部优化中视频自媒体平台注册官网